<div dir="ltr">Hi all,<div><br></div><div style>I have not been able to figure out how to calculate the map resolution of a map in Lambert Conformant Conical (LCC). The maps are 1:500 000 and cover about 7° longitude and 3-5° latitude.</div>
<div style><br></div><div style>Here's what I have:</div><div style><br></div><div style>- ellipsoid WGS84</div><div style>- standard parallels 40/52N</div><div style>- orthogonal meridian (roughly center of map, I use that as lon_0)</div>
<div style>- k factor for a given latitude (roughly center of map, I use that as lat_0)</div><div style>- a list of calibration points, basically the pixel coordinates of each 30' intersection of latitude/longitude</div>
<div style><br></div><div style>The projection string I've come up with for one of the maps looks like this:</div><div style><br></div><div style><div>+proj=lcc +k_0=1.007 +lat_0=46 +lon_0=10.5 +lat_1=40 +lat_2=52 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs</div>
</div><div style><br></div><div style>How would one go about determining the vertical and horizontal resolution?</div><div style><br></div><div style>What is the relationship between the pixel values and the map grid (meters?).</div>
<div style><br></div><div style>Unfortunately I'm a rookie and just started trying to grasp the theory of map projections. I use the GeographiLib by Charley Karney.</div><div style><br></div><div style>Thanks!</div><div style>
<br></div><div style>Regards,</div><div style>Achim</div></div>