<font color='black' size='3' face='Georgia, Times New Roman, Times, Serif'><font size="3">Hello Charles. Good stuff; thanks.<br>
<br>
Do you know of any literature around triaxial-to-spherical mappings in general (including other techniques to preserve conformality, as well as ones to preserve other traits such as equivalence)?<br>
</font>
<div> <font size="3"><br>
</font>
</div>
<font size="3">
</font>
<div><font size="3"> — daan<br>
<br>
</font>
</div>
<div style="font-family:helvetica,arial;font-size:10pt;color:black">-----Original Message-----<br>
From: Charles Karney <charles.karney@sri.com><br>
To: proj <proj@lists.maptools.org><br>
Sent: Thu, Jan 1, 2015 1:20 pm<br>
Subject: [Proj] Jacobi + Guyou projections; conformal map of ellipsoid to sphere<br>
<br>
<div id="AOLMsgPart_0_b70599ac-410f-41cd-88e5-9f38c578c0d9" style="margin: 0px;font-family: Tahoma, Verdana, Arial, Sans-Serif;font-size: 12px;color: #000;background-color: #fff;">
<pre style="font-size: 9pt;"><tt>I've updated my notes on Jacobi's conformal projection of a triaxial
ellipsoid; see
<a href="http://geographiclib.sourceforge.net/1.41/jacobi.html" target="_blank">http://geographiclib.sourceforge.net/1.41/jacobi.html</a>
New stuff:
* the limits, ellipsoid of revolution and sphere, are easily obtained;
* the Guyou projection (and hence the Peirce quincuncial projection) are
special cases of Jacobi's projection (which predates both of these);
* Jacobi + Guyou can be used to map a triaxial ellipsoid conformally
onto a sphere.
--Charles
_______________________________________________
Proj mailing list
<a href="mailto:Proj@lists.maptools.org">Proj@lists.maptools.org</a>
<a href="http://lists.maptools.org/mailman/listinfo/proj" target="_blank">http://lists.maptools.org/mailman/listinfo/proj</a>
</tt></pre>
</div>
<!-- end of AOLMsgPart_0_b70599ac-410f-41cd-88e5-9f38c578c0d9 -->
</div>
</font>