No subject


Wed Mar 9 06:20:12 EST 2011


of the forward projection, the coordinates from the ellipsoid are projected
onto a sphere of "constant total curvature" or an aposphere. I suppose this
makes the maths simpler? So the equator on this aposphere is slightly offset
from the equator on the ellipsoid.

Regards

*Hilmy*

--000e0cdff82a36b32904a1f7768e
Content-Type: text/html; charset=UTF-8
Content-Transfer-Encoding: quoted-printable

<div>Mikael,</div><div><br></div><div><br></div><div>In=C2=A0<a href=3D"htt=
p://trac.osgeo.org/proj/ticket/104">http://trac.osgeo.org/proj/ticket/104</=
a>, you said</div><div><div id=3D"main" style=3D"font-family: &#39;Times Ne=
w Roman&#39;; font-size: medium; ">

<div id=3D"content" class=3D"ticket" style=3D"padding-bottom: 2em; position=
: relative; width: 700px; max-width: 100%; "><div id=3D"ticket" style=3D"ba=
ckground-image: initial; background-attachment: initial; background-origin:=
 initial; background-clip: initial; background-color: rgb(255, 255, 221); b=
order-top-width: 1px; border-right-width: 1px; border-bottom-width: 1px; bo=
rder-left-width: 1px; border-top-style: outset; border-right-style: outset;=
 border-bottom-style: outset; border-left-style: outset; border-top-color: =
rgb(153, 153, 102); border-right-color: rgb(153, 153, 102); border-bottom-c=
olor: rgb(153, 153, 102); border-left-color: rgb(153, 153, 102); margin-top=
: 1em; padding-top: 0.5em; padding-right: 1em; padding-bottom: 0.5em; paddi=
ng-left: 1em; position: relative; background-position: initial initial; bac=
kground-repeat: initial initial; ">

<div class=3D"description"><div class=3D"searchable"><p>A +no_uoff (&quot;n=
o u-offset&quot;) means that the origin is at the so-called natural origin,=
 on the central oblique line of the projection, and near the ordinary equat=
or (on the &quot;aposphere equator&quot;, but I&#39;ve never understood wha=
t an aposphere is).</p>

</div></div></div></div></div></div><div>From my simplistic understanding o=
f Hotine&#39;s method, during the first part of the forward projection, the=
 coordinates from the ellipsoid are projected onto a sphere of &quot;consta=
nt total curvature&quot; or an aposphere. I suppose this makes the maths si=
mpler? So the equator on this aposphere is slightly offset from the=C2=A0eq=
uator=C2=A0on the ellipsoid.</div>

<div><br></div><div>Regards</div><br clear=3D"all"><span style=3D"font-size=
:large"><i><font face=3D"garamond, serif"><b><font color=3D"#FF6600">Hilmy<=
/font></b></font></i></span><br>
<br><br><div class=3D"gmail_quote"><br></div>

--000e0cdff82a36b32904a1f7768e--


More information about the Proj mailing list