[Proj] Meaning of aposphere (was: RE: RSO, +gamma and Hotine Oblique Mercator Variant A)
Mikael Rittri
Mikael.Rittri at carmenta.com
Thu Apr 28 06:20:16 EST 2011
Yes, I understand that the aposphere is some kind
of intermediate surface.
But it's the phrase "sphere of constant total curvature"
that bothers me. Most people who describes the Hotine cites
this phrase; I think it's from Snyder. I tried to look up
"total curvature", and if I remember rightly, it has at least
two meanings:
In one meaning, every surface that is topologically equivalent
to a sphere has the same total curvature (4*pi or something like
that). That's probably not what Snyder meant...
In another meaning, total curvature refers to Gaussian curvature
at a point of a surface. But in this meaning, every sphere has
constant total curvature, so the aposphere seems to be a sphere,
no more and no less. So, how does it differ from the Gaussian
sphere that is used in some other projections, like Swiss Oblique
Mercator, Krovak, and Oblique Sterographic?
Or are there other surfaces than spheres that can have a constant
Gaussian curvature at every point? (I think there is some trumpet-shaped
surface that has constant Gaussian curvature, but curvature like a saddle;
is that positive or negative curvature? But apart from that.)
Well, I shouldn't complain but try to read Hotine's original paper,
but rumors say it's very dense and difficult to follow. I suspect
I wouldn't understand it.
But if someone knows a snappy explanation of the aposphere...?
Just curious,
Mikael Rittri
Carmenta
Sweden
http://www.carmenta.com
________________________________
From: Hilmy Hashim [mailto:hilmyh at gmail.com]
Sent: den 28 april 2011 11:48
To: Mikael Rittri
Cc: PROJ.4 and general Projections Discussions
Subject: Re: [Proj] RSO, +gamma and Hotine Oblique Mercator Variant A
Mikael,
In http://trac.osgeo.org/proj/ticket/104, you said
A +no_uoff ("no u-offset") means that the origin is at the so-called natural origin, on the central oblique line of the projection, and near the ordinary equator (on the "aposphere equator", but I've never understood what an aposphere is).
More information about the Proj
mailing list